# Investigating Energy Stored in a Spring

Planning Aim ? to gain an average compression rate of the spring in the trolley in order to find the spring constant. Apparatus Clamp stand 2 clamps 2 bosses, 24 0.98N weights 2 weight holders 3 labels Pencil Sprit level Trolley Ruler (measures to nearest 5 × 10-4m) Diagram Plan ? I am going to investigate the spring constant of the spring in the trolley to enable me to calculate the energy stored in the spring in the major investigation. To calculate the spring constant, I need to plot my results onto a graph and draw a line of best fit. The spring constant is equal to the gradient of this straight line. To obtain my results, the above apparatus will be collected and set up as shown above. The spirit level will be used to check that the trolley is perpendicular to the ground. The trolley needs to be perpendicular to the ground for 2 reasons. 1). So that all of the weight of the weights act on the spring and not a component, 2). So that there is no friction between the plunger and it?s housing. The variable that is being changed is the force applied to the spring; 0.98N will be added in each of the 12 increments. After each weight has been added to the spring, a pencil mark will be made on the label. When the 12th weight has been added and the pencil mark made, the weights will be removed and placed in the order in which they were added.